Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Inflammation ; 45(3): 1076-1088, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1838368

ABSTRACT

The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than - 6. Then, ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 µM, 13.14 ± 2.081 µM and 5.158 ± 0.928 µM respectively by FRET assay. Molecular docking results also showed that ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( -)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( -)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( -)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Sepsis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catechin/analogs & derivatives , Coronavirus 3C Proteases , Cytokine Release Syndrome , Flavanones , Humans , Mice , Molecular Docking Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Sepsis/drug therapy
2.
China Review ; 21(4):1-9, 2021.
Article in English | ProQuest Central | ID: covidwho-1615149

ABSTRACT

Many people believed that cooperation in NTS could build initial confidence for China and Southeast Asian countries to manage more contentious issues, due to the low sensitivity of NTS relative to traditional security.10 To affirm their political will to cooperate, the two sides signed several agreements, some of which included the Joint Declaration on Cooperation in the Field of Non-traditional Security Issues in 2002 and the Memorandum of Understanding on NTS cooperation in 2004.11 Through engagement in disaster relief, infectious disease control, and combat against transnational crimes, China and ASEAN managed to achieve confidence building to a good extent in the 2000s, a period described as the "honeymoon" of the two-way relations.12 2.NTS Cooperation amid Changing Security Environment: Issues and Questions The regional security environment in Southeast Asia has undergone notable changes in the 2010s. [...]while welcoming the benefits and opportunities created by China's greater commitment, Southeast Asian countries are increasingly aware of the new trend in regional security and many Southeast Asian elites are more concerned about the expansion of China's influence in the region on all fronts.14 The conflicts and tensions in the South China Sea have also contributed to many regional states' apprehensions toward China. [...]one should also consider the dynamics beyond the China-Southeast context. [...]greater interest and commitment of China do not necessarily translate to strengthened NTS cooperation with Southeast Asia as the outcomes of its diplomatic endeavors are subject to the influence of a variety of factors and dynamics.

3.
Phytomedicine ; 91: 153704, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1347789

ABSTRACT

BACKGROUND: COVID-19 (Coronavirus Disease-2019) has spread widely around the world and impacted human health for millions. The lack of effective targeted drugs and vaccines forces scientific world to search for new effective antiviral therapeutic drugs. It has reported that flavonoids have potential inhibitory activity on SARS-CoV-2 Mpro and anti-inflammatory properties. Dihydromyricetin, as a flavonol, also has antiviral and anti-inflammatory potential. However, the inhibition of dihydromyricetin on SARS-CoV-2 Mpro and the protective effect of dihydromyricetin on pulmonary inflammation and fibrosis have not been proved and explained. PURPOSE: The coronavirus main protease (Mpro) is essential for SARS-CoV-2 replication and to be recognized as an attractive drug target, we expect to find the inhibitor of Mpro. Novel coronavirus infection can cause severe inflammation and even sequelae of pulmonary fibrosis in critically ill patients. We hope to find a drug that can not only inhibit virus replication but also alleviate inflammation and pulmonary fibrosis in patients. METHODS: FRET-based enzymatic assay was used to evaluate the inhibit activity of dihydromyricetin on SARS-CoV-2 Mpro. Molecular docking was used to identify the binding pose of dihydromyricetin with SARS-CoV-2 Mpro. The protective effects of dihydromyricetin against BLM-induced pulmonary inflammation and fibrosis were investigated in C57BL6 mice. BALF and lung tissue were collected for inflammation cells count, ELISA, masson and HE staining, western blotting and immunohistochemistry to analyze the effects of dihydromyricetin on pulmonary inflammation and fibrosis. MTT, western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and wound healing were used to analyze the effects of dihydromyricetin on lung fibrosis mechanisms in Mlg cells. RESULTS: In this study, we found that dihydromyricetin is a potent inhibitor targeting the SARS-CoV-2 Mpro with a half-maximum inhibitory concentration (IC50) of 1.716 ± 0.419 µM, using molecular docking and the FRET-based enzymatic assay. The binding pose of dihydromyricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the dihydrochromone ring of dihydromyricetin interact with the imidazole side chain of His163 through π-π stacking. The 1-oxygen of dihydromyricetin forms a hydrogen bond with the backbone nitrogen of Glu166. The 3-, 7-, 3'- and 4'-hydroxyl of dihydromyricetin interact with Gln189, Leu141, Arg188 and Thr190 through hydrogen bonds. Moreover, our results showed that dihydromyricetin can significantly alleviate BLM-induced pulmonary inflammation by inhibiting the infiltration of inflammation cells and the secretion of inflammation factors in the early process and also ameliorate pulmonary fibrosis by improving pulmonary function and down-regulate the expression of α-SMA and fibronectin in vivo. Our results also showed that dihydromyricetin inhibits the migration and activation of myofibroblasts and extracellular matrix production via transforming growth factor (TGF)-ß1/Smad signaling pathways. CONCLUSION: Dihydromyricetin is an effective inhibitor for SARS-CoV-2 Mpro and it prevents BLM-induced pulmonary inflammation and fibrosis in mice. Dihydromyricetin will be a potential medicine for the treatment of COVID-19 and its sequelae.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Flavonols/pharmacology , Protease Inhibitors , SARS-CoV-2 , Virus Replication , Animals , Antiviral Agents/pharmacology , COVID-19 , Fibrosis , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL